Small Wind Power for your home, business, or farm

A Presentation to Co-op Power

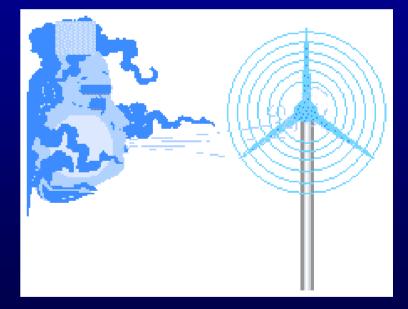
Sally Wright, PE

Staff Engineer

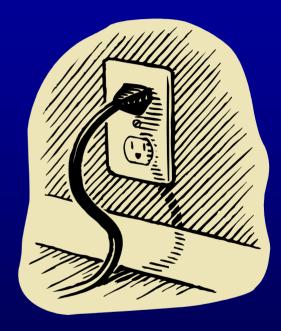
Renewable Energy Research Laboratory University of Massachusetts, Amherst

Slide Credits: NREL- Jim Green & Trudy Forsyth; Paul Gipe; AWEA

Small Wind Power: Today's Agenda


☆ ☆ 1. Why renewable energy? Why wind?

- ♦ ◆ 2. Technology overview
 - Available turbines
 - Noise & other impacts
- ♦ ♦ 3. Economics
 - Costs, pay-back
 - Incentives
- **♦ ♦** 4. How do I get one?
 - Siting & zoning
 - Grid interconnection



1. Why Renewable Energy?

- Sustainable
- Clean
- Produced locally

 Widely available
 Energy independence
- Reduced price volatility
- World & national policy

3

I. Why Renewable Energy?

• All energy use has impacts

- Environmental
 - Emissions / asthma ...
 - Mountain top removal, nuclear waste....
- Economic
 - Oil imports / trade deficit ...
 - Declining oil production/ Peak Oil...
 - Fuel price volatility / brown-out threats in January
- Political
 - International security ...

Many Renewable Energy Resources

- Wind energy
- Solar photovoltaics
- Solar thermal
- Biomass electric
- Biomass fuels
- Geothermal energy
- Hydropower
- Advanced Solar

ergy

Slide Source: Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions, Oct 1997

Why Wind Power?

- All energy has environmental impacts

 And economic, and socio-political...
- Wind power is one of the lowest-impact forms

 available today

Hull's 660 kW turbine next to high school (Hull, MA)

6

Why <u>Small</u> Wind Power?

Personal decisions vs. public policies... **Big wind** Small wind ...speed & level of conversion

2. Small Wind Technology

- Small turbines today
- What they look like –components
- How they work
- How much power they make

8

Small Wind Turbines Are Different

Utility-Scale Wind Power,
 600 - 1,800 kW wind turbines

9

- Professional maintenance crews
- 15+ mph (7+ m/s) average wind speed
- Small, "Distributed" Wind Power 0.3 - 50 kW wind turbines
 - Installed at individual homes, farms, businesses, schools, etc.
 - On the "customer side" of the meter
 - <u>or</u> off the utility grid
 - High reliability, low-maintenance
 - 9+ mph (4+ m/s) average wind speed

1.500 kW

10 kW

Small Wind Turbine Technology

- Grid connected
 Or battery charging
- 80- to 120-foot towers
 Up out of turbulence
- 3 blades
- \$20,000 to \$60,000
 - Turbine & tower & installation
- Most common models:
 - Simple, rugged design
 - only 2-4 moving parts
 - little regular maintenance required

10

How big a system do I need? What size turbine?

- Electric Loads
- Power produced depends on:
 - Winds
 - Turbine
- Measuring size:
 - -kW
 - Diameter
 - kWh/year

but, first, a brief diversion...

11

Electricity 101: Aren't Energy and Power the same thing?

12

Electricity 101: *Power vs. Energy*

• Power = \underline{rate}

13

- - Kilowatts, e.g. 10 x 100 W light bulbs
 - Megawatts = 1000 kW
 - Horsepower

Electricity 101: *Power vs. Energy*

• Energy ... is the <u>quantity</u>

14

Western Massachusetts Electric

Page 2 of 2

Account Number: Statement Date: Next Reading On/About: Billing Cycle: Customer Name Key: Service For: SALLY D WRIGHT

Distribution Charges: Customer Charge Energy Charge Transition Charge Energy Conservation Charge Renewable Energy Charge

Total Delivery Services

Supplier Services Detail

RATE: Default Service Fixed

Generation Services Chg

176 kWh X \$0.027830 176 kWh X \$0.008280 176 kWh X \$0.002500 176 kWh X \$0.000500

176 kWh X \$0.058290

\$0.570240

Electricity 101: *Power vs. Energy*

• "Kilowatt-hours"? – That sounds like a *rate* like miles per hour, or gallons per minute! • Quantity Rate Gallons/min Gallons Kilowatt * hour \rightarrow kW kW per hour

15

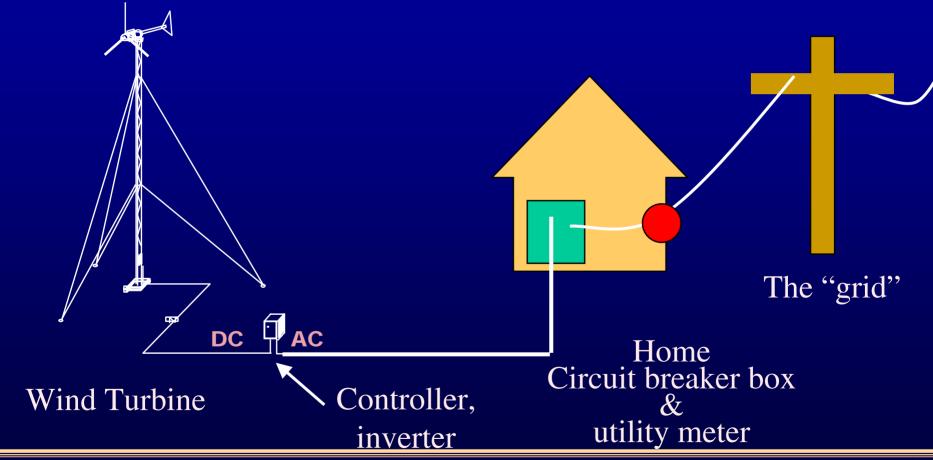
Electricity 101: Aren't Power and Energy the same thing?

	Energy 7	Power	
	Quantity	Rate Martin	
Unit	kWh	kW, MW	
Water analogy	Gallons	Gal / Min	
Car analogy -	- How far? - Gallon of gas	Engine HP	
Cost example	14 ¢/kWh	\$5,000/kW	
Grid	Consumption & production	Installed capacity	

16

What size turbine? Technically: Power (*kW*), Diameter

17

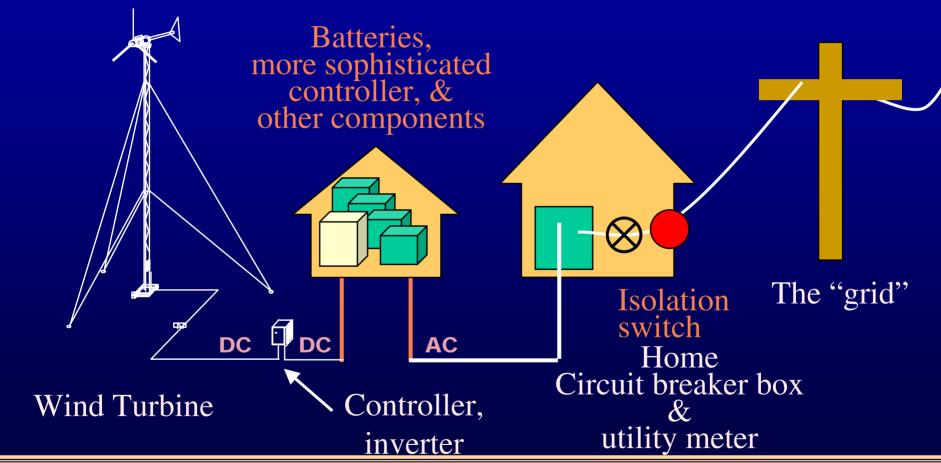

Turbine	"Rating" (kW)	Diam (ft)	Tower (ft) (e.g.)
SWWP AIR-X	0.4	3.8'	60'
Bergey XL 1	1.0	8'	80'
SWWP Storm	1.8	12'	40'
SWWP Wh. 500	3	15'	80'
Bergey Excel	7.5	22'	80'
FL 30	30	43'	120'
NW100/19	100	63'	115'
V27 (225 kW)	225	89'	110'
V47 (e.g. Hull's)	660	154'	164'
GE 1.5SL	1,500	253'	197'

What size turbine? Useful: Energy (kWh/year)

Turbine	Rating (kW)	Example* of Annual Energy Production (kWh/yr)
SWWP Wh 500	3	6,500
Bergey Excel	7.5	16,440
Average Mass. Household	0.8 avg.	7,200
Hull's V47	660	1,500,000

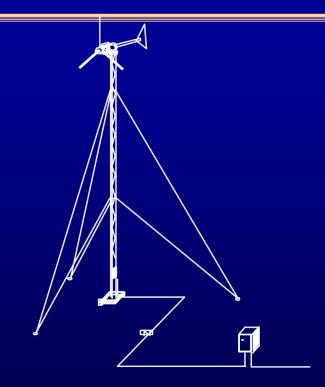
- Your mileage can and will vary!
- Depends on hub-height wind speed, turbulence, maintenance, etc. Based on Mfr information, 12 mph annual mean winds (15 in Hull's case), typical tower height.

Home Energy Systems Basic Wind System



19

Home Energy Systems Back-up power for utility power outages

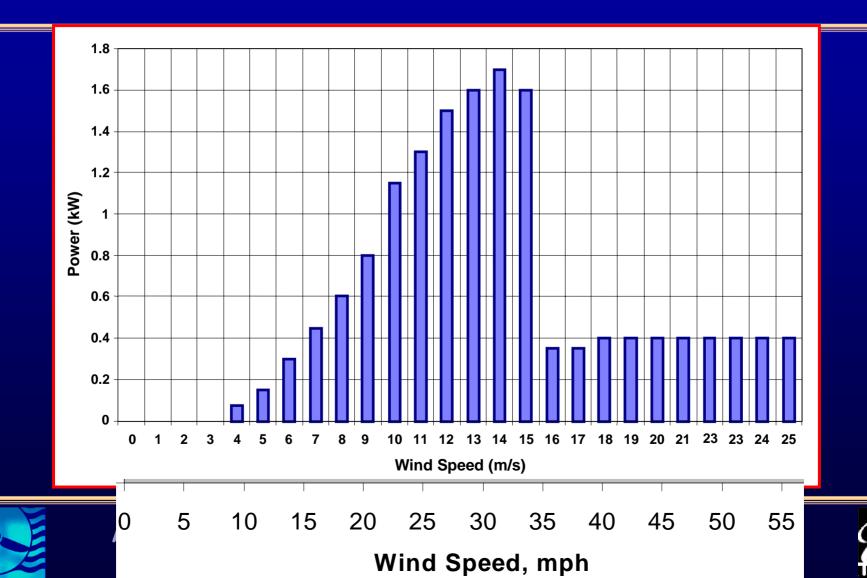


20

The Wind Turbine Controller

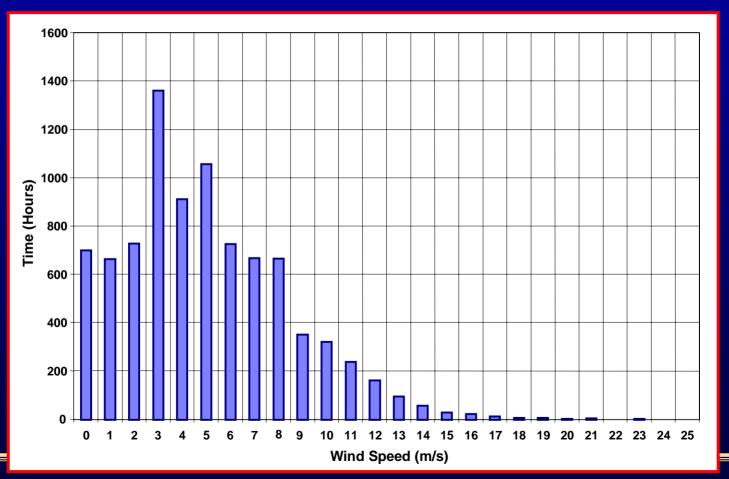
- Grid-Tied
 - "Inverter," converts the power to constant frequency 60 Hz AC
- Battery-Charging
 - DC for battery-charging
 - Regulates the battery voltage
 - to prevent over-charging
 - When the battery is fully charged:
 - Power is diverted to another load, or ...
 - The rotor is unloaded and allowed to "freewheel"

21



A Bi-Directional Meter – power goes in <u>or</u> out of your house

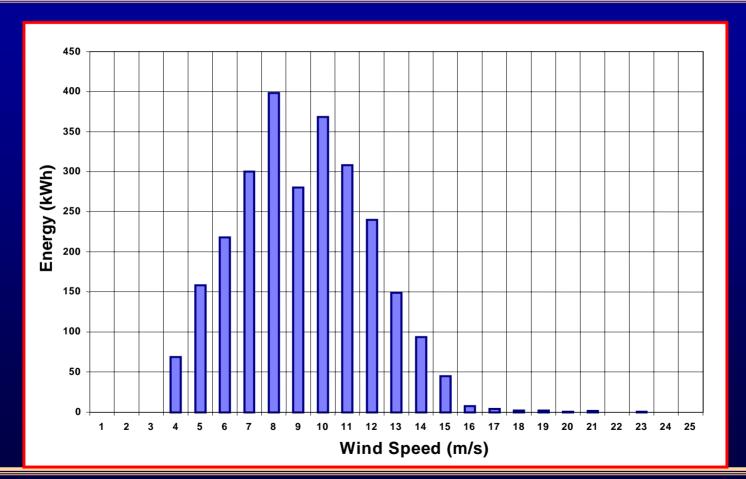
22



Wind Turbine Power Curve Bergey 1500 (Manufacturer's Data)

23

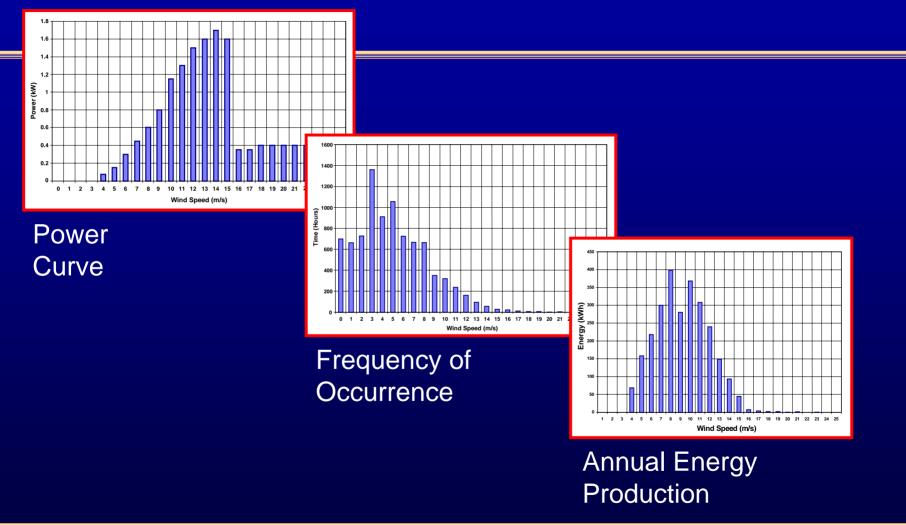
Wind Speed Frequency of Occurrence Average Wind Speed: 5 m/s (11 mph)



24

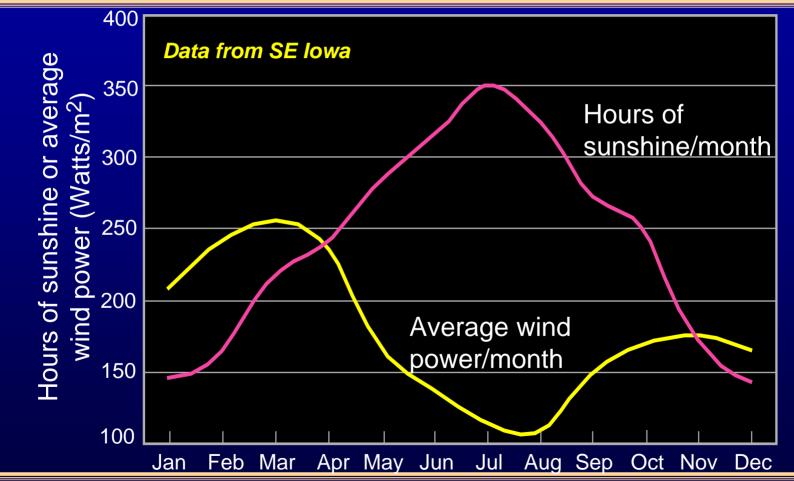
Annual Energy Production: 2643 kWh/year

Bergey 1500 @ 5 m/s (11 mph) average wind speed



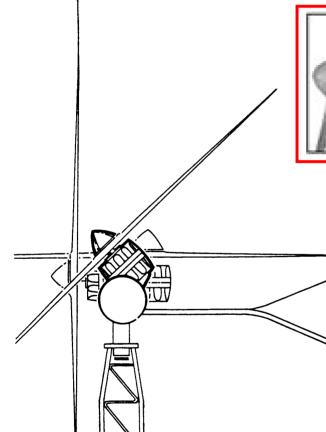
25

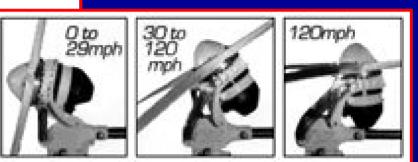
Estimation of Annual Energy Production



26

Solar and Wind Resources are Complimentary

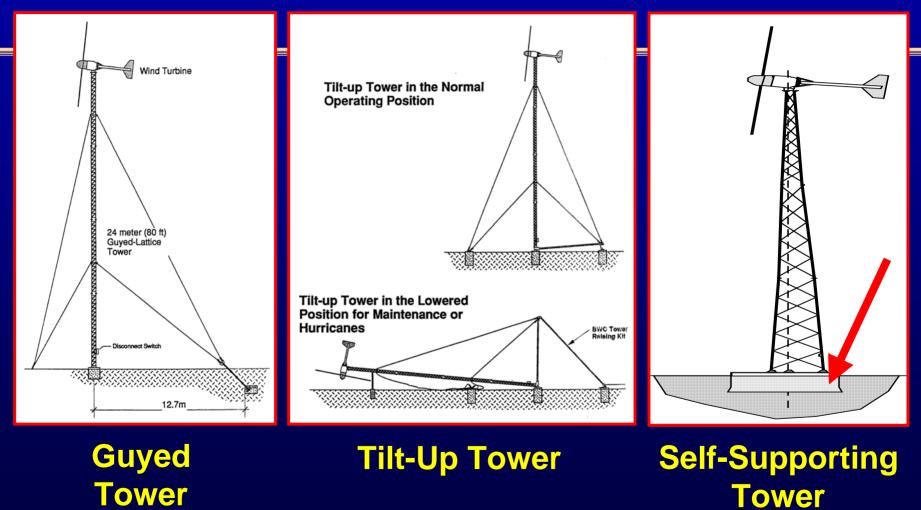




27

Over-speed Protection During High Winds

• Furling:


- Rotor moves out of high winds
- Aeroelastic stall:
 - Blades bend out of wind

28

Small Wind Turbine Towers

29

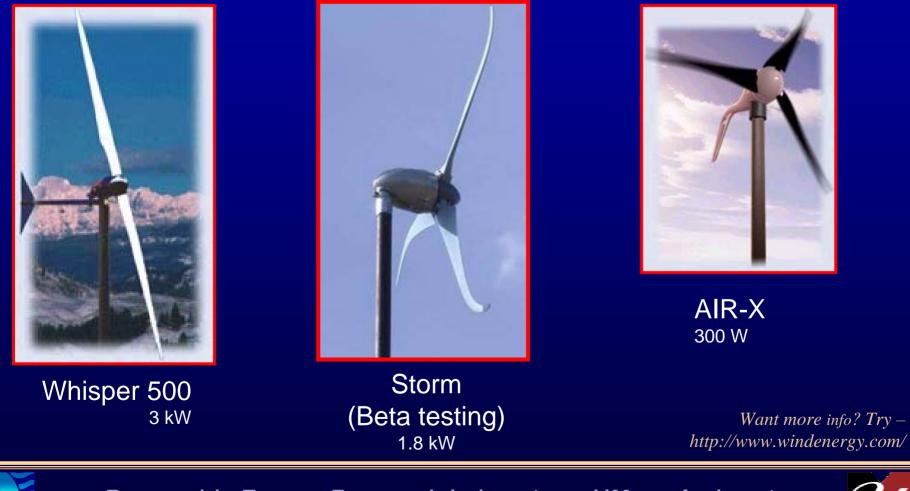
Small Wind Turbines Available Today

•US manufacturers

Imported

30

Bergey Windpower Norman, OK


Want more info? Try – www.bergey.com

31

Southwest Windpower Flagstaff, AZ

32

African Wind Power

- Various models
 1.739 kW
- Cape Cod Regional Technical High School
 - Harwich, MA
 - installed in 2005

Want more info? Try – http://www.thesolar.biz/African%20Wind%20Power%20Wind%20Turbines.htm

33

Abundant Renewable Energy

- ARE110
 - 3.6 m diam
 - 2.5 kW
- ARE442
 - 7.2 m diam
 - 8.5 kW
 - Beta testing

Want more info? Try – http://www.abundantre.com/ARE_Wind_Turbines.htm

34

Proven Engineering Products, Ltd. Scotland, UK

Dozen in the U.S. (2003)Imported by: Lake Michigan Wind & Sun, 920.743.0456

35

Want more info? Try – http://www.provenenergy.co.uk/

Wind Turbine Industries, Inc. Prior Lake, MN

Jacobs 29/20 20 kW

Lots of moving parts

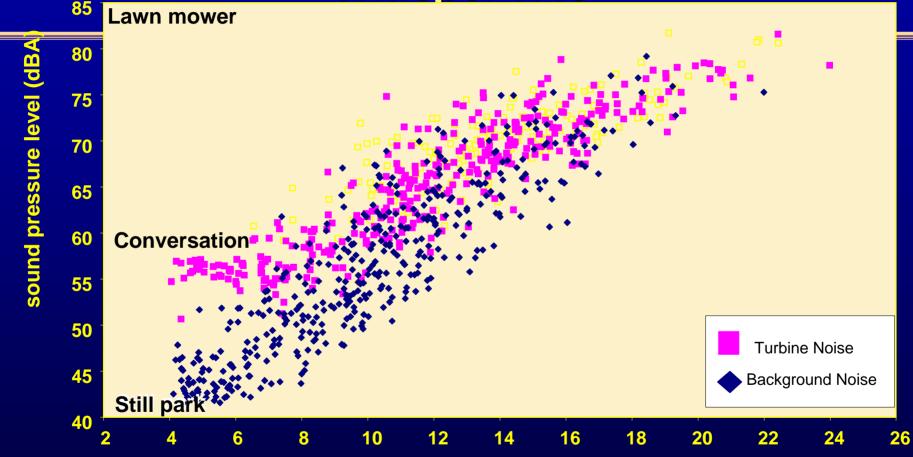
36

Impacts: Noise

- Measured in dBA
- Background noise
 Ambient 30 50 dBA
- Sound level change

Sound Levels:

30 dBA: whisper
40 dBA: living room, still park
50 dBA: windy park
55-65: conversation
85-95: lawn mower
Level Change:
+ 3 dB: limit of perception


+10 dB: legal rise

37

NWTC Noise Test Data: Whisper H40

standardized wind speed (m/s)

38

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rer/

Impacts of Small Wind Turbines: Birds?

- Reports of residential-scale wind turbines killing birds are very rare
- Other threats are greater than a small, unlighted wind turbine, e.g. – Sliding glass door
 - Car
- Historic turbines left an impression

39

**** 3.** Economics of Small Wind

- Incentives
 - Federal
 - Massachusetts
 - Costs of small wind system
- Pay-back time

40

⁴¹ **Policy Options:** How can Government support Small Wind?

- Encourage Investment
 - Rebates, buy-downs, grants
 - Tax credits
 - Sales tax reductions/exemptions
 - Property tax reductions/exemptions
 - Low interest loans
- Make it easier
 - Net metering
 - Line extension / interconnect policies Yes (latter)
 - Uniform zoning requirements

Want more info? Try –

http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=MA08R&state=MA&CurrentPageID=1 Or www.nationalwind.Org/pubs/strategies/default.htm

Renewable Energy Research Laboratory, UMass Amherst

- Yes
 - Yes
 - Yes
 - Yes

- Yes

- No

Federal Incentives

- USDA & Farm bill: support for renewables
 - Low interest loans
 - Loan guarantees
 - Grants

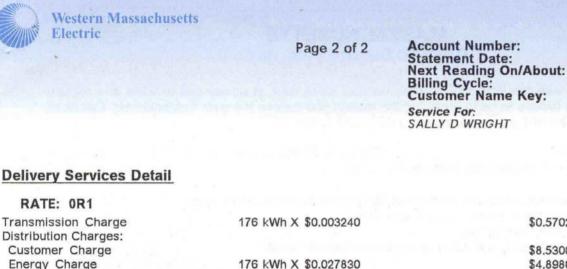
Want more info? Try – http://www.rurdev.usda.gov/rbs/farmbill/2005NOFA/nofa05wind_sm.html

42

Mass. Financial Incentives for Residential Small Wind

- Renewable energy state income tax credit
 -15% up to \$1000
- RE equipment sales tax exemption
 - For principle residence
 - -Also commercial
- Property tax exemption
- Net metering

Want more info? Try – http://www.dsireusa.org/


43

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rer/

MTC: R.E. Trust's **Small Renewables Initiative**

• Rebates up to \$50,000 for Installations in Mass.

176 kWh X \$0.008280

176 kWh X \$0,002500

176 kWh X \$0.000500

$8.8 \notin$ to the Mass. Renewable **Energy Trust**

	Want	more	info?	Try-
--	------	------	-------	------

http://www.masstech.org/renewableenergy/small renewables.htm

\$0.570240

\$8.530000

\$4.898080

\$1.457280

\$0,440000

\$0.088000

Transition Charge

Energy Conservation Charge

Renewable Energy Charge

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl

MTC-MRET Small Renewables Initiative

Installation Matrix for Small Renewa	ble Initia	tive - Bl	ock # 2
	Т	echnolo	gу
		Min d	lludro

	PV	Wind	Hydro
Distributed Generation	(\$/watt dc)	(\$/watt ac)	(\$/watt ac)
Base Incentive (\$/watt)	\$2.75	\$2.75	\$4.00
PLUS: Additions to Base			
MA-manufactured components	\$0.50	\$1.00	\$0.75
Public Buildings	\$1.50	\$1.00	\$2.00
Economic Target Area	\$1.00	\$1.00	\$1.00
Back-up for Critical Loads	\$0.50	\$0.10	N/A
Building-Integrated PV	\$1.00	N/A	N/A
Affordable Housing			
20% to less than 50 % Low-Income/ Affordable Housing (40B), or	\$1.00	\$1.00	\$1.00
50% or greater Low-Income/ Affordable Housing (40-B)	\$2.50	\$2.50	\$2.50
High Performance Buildings			
LEED or CHPS certified	\$1.50	\$1.00	\$2.00
Energy Star or equivalent	\$0.50	\$0.35	\$0.75

Mass. Incentives for Small Wind: Income Tax Credit

- Renewable energy state income tax credit
 - Personal tax credit
 - 15% tax credit for state income tax
 - Maximum of \$1,000
 - Credit can be carried over if the credit is greater than one's income tax liability

46

Mass. Incentives for Small Wind: Sales Tax Credit

- Renewable energy equipment sales tax exemption
 - -Exempts wind from state sales tax
 - Only applicable for an individual's principal residence
 - -MA sales tax rate is 5%

47

Mass Incentives for Small Wind: Net Metering

- 60 kW maximum cap residential, commercial industrial, utilities
- Net excess generation credited at average monthly market rate
- Law applies to distribution companies -Massachusetts Electric Company, Boston Edison company, Fitchburg Gas and Electric Light Company and Western Mass
- For more information www.state.ma.us/doer

48

Net Metering of Renewable Energy

- Meter sometimes turns backward
- Bill for "net" consumption/generation
- Net generation

 Credited to
 next month's bill

Want more info? Try –

http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=MA08R&state=MA&CurrentPageID=1

49

Net Metering: How it works

9am :	+ 200 watts	- 500 watts	= - 300 Watts (in)
10pm :	+ 800 watts	- 300 watts	= + 500 Watts (out)
April :	+ 500 kWh	- 600 kWh	= - 100 kWh (pay)
January :	+ 800 kWh	- 600 kWh	= + 200 kWh (credit)
			The "grid" – i.e. your
	Ý		electric bill

50

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rer/


Small Wind Turbine Economics

- Installed costs
 - -\$2,000 and \$6,000 / kW
 - -turbine, controller, and tower
 - -Cost trade-offs:
 - taller tower \rightarrow more energy
 - rugged/durable design → longevity
- Benefits
 - example: \$10 40 gross savings per month
- Pay-backs: 6 30 years
- Equipment life-times :10 30 years
- Warranties : 2 5 years

51

**** 3.** Economics of Small Wind

- Incentives
 - Massachusetts
 - Federal
- Costs of small wind system
- Pay-back time


Small Wind Turbine Economics

- Installed costs
 - -\$2,000 and \$6,000 / kW
 - -turbine, controller, and tower
 - -Cost trade-offs:
 - taller tower \rightarrow more energy
 - rugged/durable design → longevity
- Benefits
 - example: \$10 40 gross savings per month
- Pay-backs: 6 30 years
- Equipment life-times :10 30 years
- Warranties : 2 5 years

53

Wind Turbine Installed Cost Example 1

Bergey Excel-S (10 kW) (7	'm)	High Cost	Low Cost
Wind turbine & inverter	\$20,900		
Tower (80 ft guyed)	\$6,000	\$15,100	\$5,400
Accessories	\$860	\$990	\$800
Shipping	\$1,200		
Installation	\$4,000	\$10,000	\$2,000
Permits/Fees	\$500	\$3,500	\$0
Sales Tax	not included	6%	-
Total	\$33,460	\$53,981	\$30,300

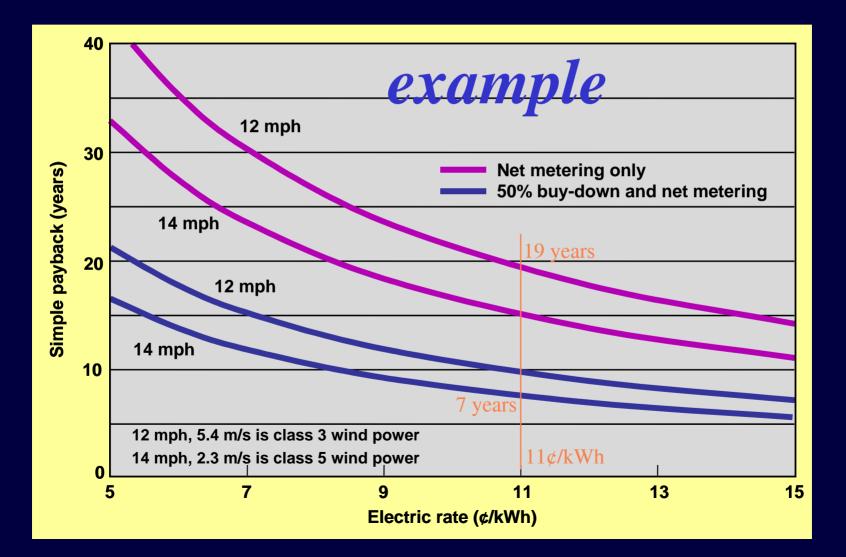
54

Wind Turbine Installed Cost Example 2

Southwest Windpower Whisper 175 (3 kW) (15 foot, 4.26m)

Wind turbine & inverter	\$8,950
Tower (80 ft guyed)	\$1,920
Battery and Containment	\$340
Shipping	\$400
Installation	\$2,620
Permits/Fees	\$200
Sales Tax	not included

Total


\$14,430

55

Simple Payback: Incentives, Wind, & Price/kWh matter

For More Information on Small Wind Economics...

- Bergey Payback Calculator
 www.bergey.com/Channels/1F2.htm
- Wind Resource Atlas of the United States http://rredc.nrel.gov/wind/pubs/atlas/
- Database of State Incentives for Renewable Energy

www.dsireusa.org

57

Slide courtesy of AWEA

58 * 4. So you want a small wind system What now?

- Consider options
 Resource

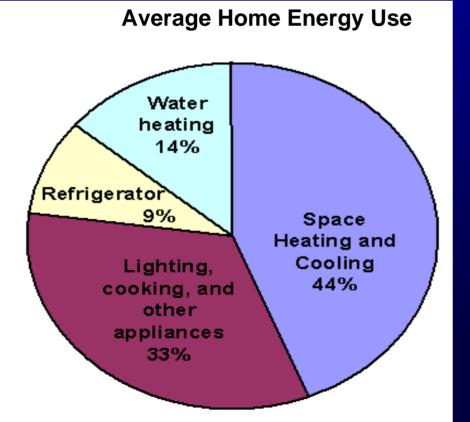
 wind speed

 Siting
- Zoning

Is small wind right for you?

- Your motive
 - Clean electricity
 - Independence
 - Back up power
 - Need Batteries

- If your motive is Economics:
 - *Minimum* 10 mph (4.5 m/s) wind speed average
 - Your utility cost: >= 10 cents/kWh



59

Before You Buy

Economics will depend on system chosen, local wind resource, electricity costs, and how you use your wind system

60

Evaluate energy efficiency options first!

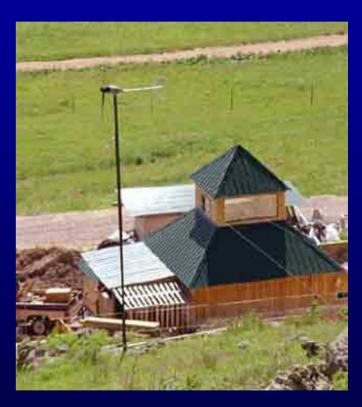
Approach investment as you would any other major purchase – do your homework

Slide courtesy of AWEA

Steps to deciding on Wind for your home

- Consider other options also
 - Conservation, Energy efficiency
 - Natural gas, propane
- Determine electricity needs
 - Both energy & power
- Determine resource
- Estimate system size, performance, and cost
- Choose machine...

61

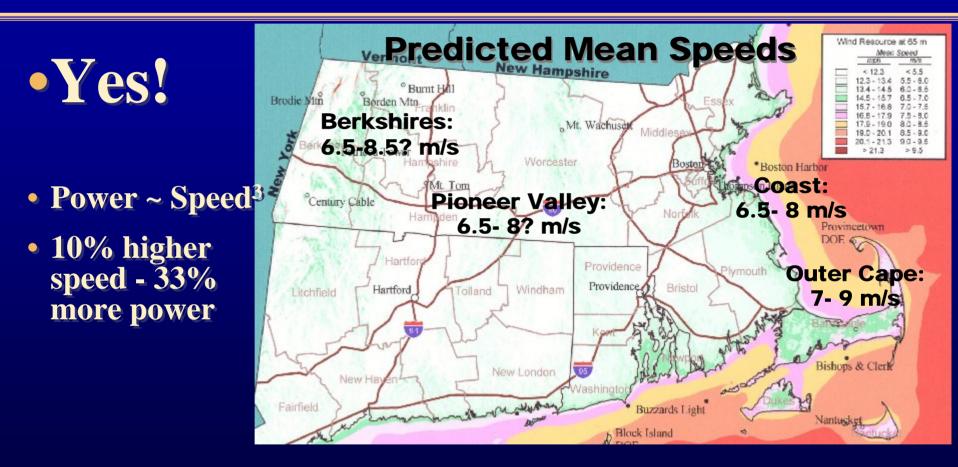


Siting

- Resource

 Speed
 obstacles
- Space

 Depends on zoning
 Need >= acre


~1000' from neighbors

62

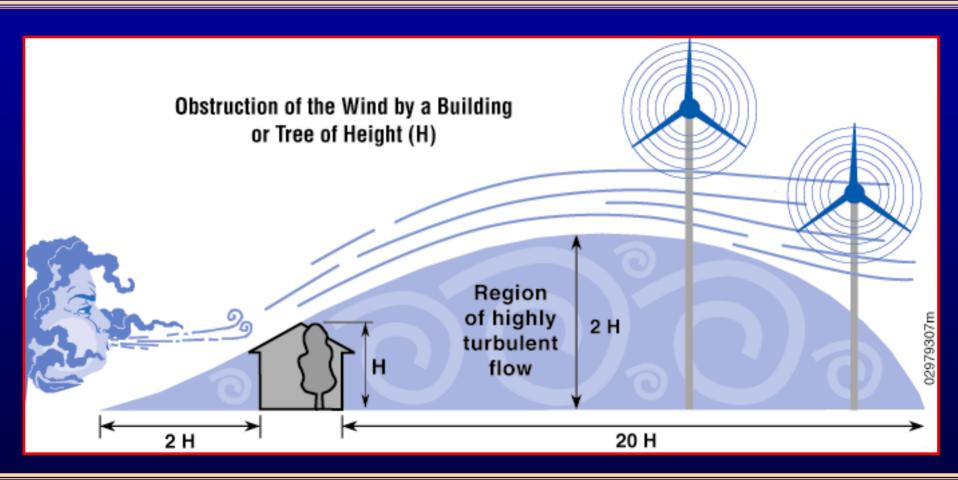
Siting: Does Wind Speed Really Matter?

63

Siting: Do I have enough wind?

• Where is Massachusetts' Wind Resource?

- Ridges
- Coast
- Islands
- Offshore
- Anemometer Tower?Or micro turbine?


Want more info? Try – http://www.awstruewind.com/inner/windmaps/NewEngland.htm

64

"Micro-siting" – Obstacles Matter

65

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rer/

What about ?

- On the roof? No.
 - Vibration, noise, turbulence
 - Survivability
- Used or rebuilt machines?
 - Reputable rebuilders
- Making my own?
 - Or my neighbor the inventor....
 - Survivability
 - Hugh Piggot

66

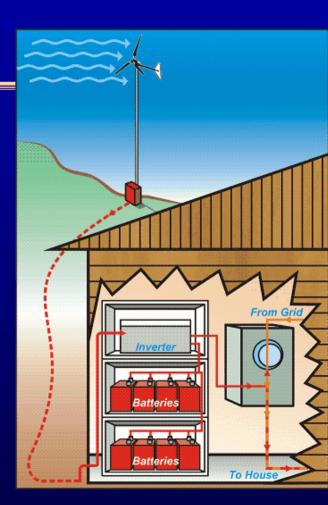
Grid Interconnection: The good news

- The most common problems in utility contracts:
 High liability insurance requirements
 One-sided indemnity provisions
 High customer charges
 E.g. standby or backup charges
- Mass. law prohibits them!

Want more info? Try -

http://www.awea.org/faq/intcon_nt.html, www. Dsireuse.org

67


Grid Interconnection

- Offset kWh purchase

 Utility acts as "battery"
- Issues:

68

- Technical & SafetyContractual
- Contact your utility before hooking up

Want more info? Try –

Grid Interconnection Technical Requirements

Safety Issues

69


- Must meet electrical codes
- Must stop supplying power to grid during power outages

Power Quality Issues

- Must synchronize with grid
- Must match utility power's voltage, frequency and quality

Be Safety Conscious!

- Batteries & power electronic devices store energy
- Comply with the NEC (National Electric Code)
- Use good practices for climbing wind turbine towers

70

For More Information on Interconnection...

- "Connecting a Small-Scale Renewable Energy System to an Electric Transmission System" U.S. Department of Energy Reference Brief (bibliography) 800-DOE-EREC
 - www.eren.doe.gov/consumerinfo/refbriefs/ja7 .html

"Connecting to the Grid"

71

Interstate Renewable Energy Council www.irecusa.org

Slide courtesy of AWEA

Overcoming Barriers Small Wind 103: Siting Issues

Addressing permit requirements, height restrictions, & environmental concerns

Slide courtesy of AWEA

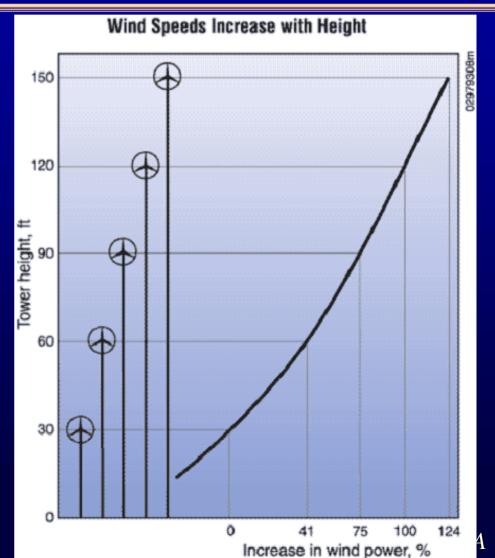
Potential Obstacles

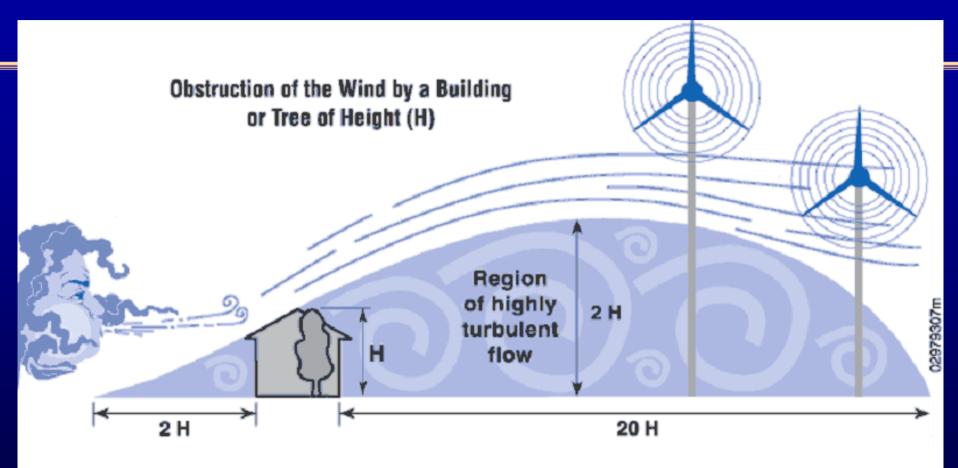
Legal issues

73

- City, town, or county ordinances restricting height or requiring minimum setbacks
- Building codes and covenants

Environmental Issues


- Neighbors' concerns (visual impact, noise)
- Potential physical obstacles (growing trees, planned construction)


Tower Height Matters

 Wind speed increases with height

- Small increases in wind speed result in large increases in power
- Tall towers often needed for clearance above obstacles (turbulence)
- May require a variance or a special use permit

Height or Distance Needed

Prevailing wind

75

Noise & Visual Impact

Improved designs have made machines much quieter

76

- Comparable to central AC unit
- Noise levels fall sharply with distance

1 acre is a good rule-of-thumb minimum property size for a small wind installation capable of powering the whole house

Objections are less likely in a rural setting

- Spinning blades perceived as useful
- Talk to neighbors before seeking permit

Raising Awareness Increases Acceptance

• Emphasize the positive – quiet, safe, renewable, non-polluting source of energy

77

• Supply objective data – expected decibel level, photographs of the equipment

 Ask your city/county planners to designate small turbines a "permitted" use to allow 80- to 120-foot towers – 35-foot limits often date back to early 1900s

Zoning: Primarily local code

• Zoning

78

- Height
- Setbacks
 - Site plan
- Noise
- May require variance
 - Permitted use
 - Special use
 - Special hearing?
- Building code
 - Drawings of tower and foundations/footings
 - Engineering analysis, wet or dry stamp?
- "Approved" wind turbines (design safety)
 - Certification to national/international standards
 - Evidence of reliable one-year operation

Renewable Energy Research Laboratory, UMass Amherst

Zoning & permitting: Federal, etc.

- National Electric Code
 - One-line electrical drawings
 - FAA Advisory Circular AC 70/7460-2K
 - Investigate if within ~2.5 miles of runway
- FAA

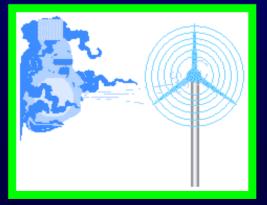
(Circular AC 70/7460-2K)

- Investigate if within ~2.5 miles of runway
- Notice to the utility, and/or interconnection agreement
- Notice to neighbors
- TV/radio interference
 - Not a problem for wood or fiberglass blades

79

Renewable Energy Research Laboratory, UMass Amherst

For More Information on Zoning Issues...


• Legal and Safety Issues – U.S. DOE Small Wind System Installation Reference Brief

www.eren.doe.gov/consumerinfo/refbriefs/ja2.html

• AWEA Advice from an Expert www.awea.org/faq/sagrillo

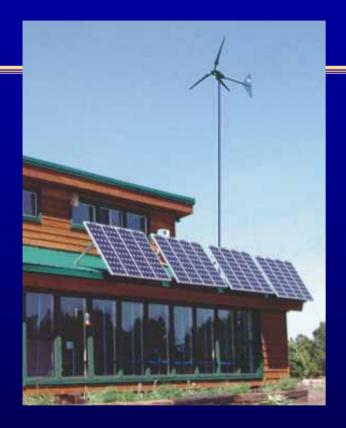
80

- Trials and Tribulations
- Keeping Hearings Under Control
- Zoning Obstacles
- Perceptions/Local Concerns

Overcoming Barriers *Expanding the Market for Small Wind Energy Systems*

81

- Small Wind 102: Economics Making the numbers work
- Small Wind 103: Siting Issues Addressing permit requirements, height restrictions, and environmental concerns
- Small Wind 104: Grid Interconnection Reaching an agreement with your utility


Overcoming Barriers

82

Small Wind 102: Economics Making the numbers work

Installation Costs

83

- Estimate \$2-4/installed watt for typical system
- Smaller systems require smaller initial outlay, but cost more per watt
- Taller towers cost more, but usually reduce the payback period

A 4-10 kW system can meet the needs of a typical home

Customers paying 12 cents/kWh or more for electricity with average wind speeds of 10 mph or more can expect a payback period of 8-16 years

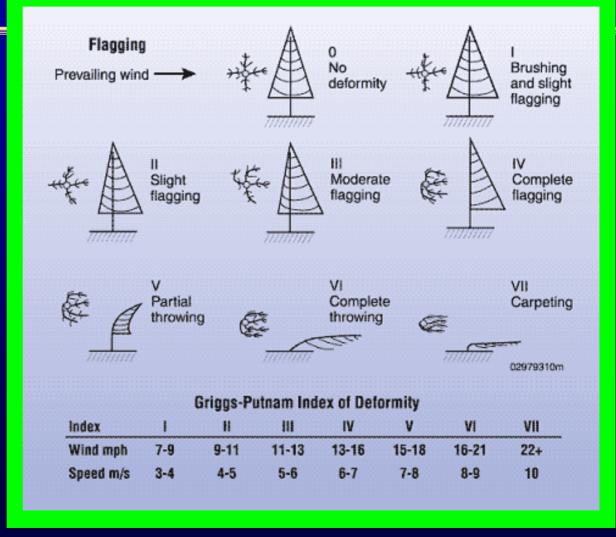
Factors Affecting Payback

- Type, size and configuration of system
- Wind resource

84

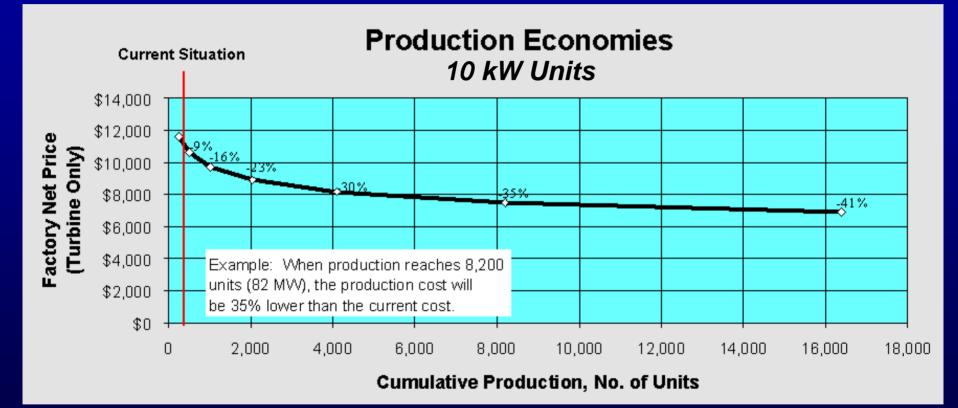
- Local cost of electricity
- How wind system is used
- Rebates available, if any

If you can participate in a California-type 50% buy-down program, have net metering and average annual winds of at least 15 mph (6.7 m/s), your system can pay for itself in about 6 years


Indirect Estimates of Wind Resource

 Review wind maps

85


- Obtain airport data
- Visually observe site vegetation

See "A Siting Handbook for Small Wind Energy Conversion Systems," 800-553-6847 or <u>www.ntis.gov/ordering.gov</u>

Production & Technology Improvements Bringing Down Costs

86

Costs for small wind turbines are projected to decrease to \$1.50 / kW by 2010

Bergey XL installation

Bergey 1 kW XL at James Madison University, Virginia Wind Energy Collaborative

Bergey XL installation

Bergey XL installation

91

Rei

Bergey XL installation

92

11 01 100

⁹³ AWT 3.6 meter, installed July '05 Cape Cod Regional Technical High School

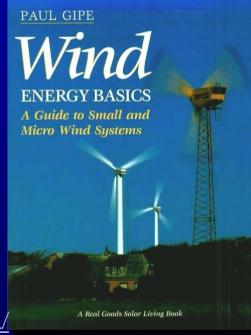
Quie neighbor is thinking of putting one in.

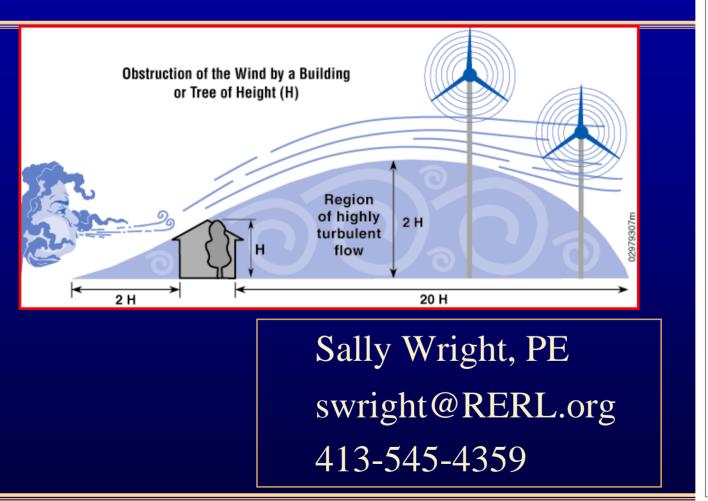
Installation, with tilt-up tower

Thanks & For more information

- Thanks to -
 - Co-op Power for organizing this & supporting clean energy!
 - For more information:
 - www.awea.org/smallwind/toolbox/default.asp
 - -<u>www.ceere.org/rerl/</u> fact sheets & links
 - See also: links on slides for specific topics

95


Renewable Energy Research Laboratory, UMass Amherst


For More Information on Small Wind

- AWEA, small wind turbine section <u>www.awea.org</u>
- Home Power magazine <u>www.homepower.com</u>
- Paul Gipe's books <u>www.chelseagreen.com</u>
 - Wind Energy Basics, Wind Power for Home and Business
- Mick Sagrillo's Videos and articles

- (writes for Home Power magazine, etc.)
- Wind Powering America http://www.eere.energy.gov/windandhydro/windpoweringamerica/
- Equipment Mfrs (see links above)
- <u>http://www.windustry.com/resources/small-scale.htm</u>
- Interstate Renewable Energy Council & their The Small Wind Web Site <u>http://irecusa.org/smallwindenergy/index.html</u>

**** 5.** Your Questions

97

Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rer/

